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Direction of arrival estimation
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Sinusoidal source (wavelength A\, complex amplitude A) at angle 6 induces
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Source localization

receivers
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We observe a narrowband source emitting from (unknown) location 7(:
y = aG(rp) + noise, y e CV

The dependence of G(7) on 7 might be complicated, “implicit”



Subspace matching

Collection of subspaces {Sy: 0 € ©}
@ each &y is K-dimensional

@ 0 is a continuous (multi) parameter



Subspace matching

Collection of subspaces {Sy: 0 € ©}
@ each &y is K-dimensional

@ 0 is a continuous (multi) parameter
Subspace matching: Given hg € RY, find closest subspace

0= in ||hg — Pghol|?
argggg“ 0 ohol3



Subspace matching

Collection of subspaces {Sy : 6 € O}
@ each &y is K-dimensional

@ @ is a continuous (multi) parameter

Subspace matching: Given hg € RY, find closest subspace

0 = arg mln |\ho — Pehon

Compressed subspace matching: Given y = ®hg, where ® is M x N,
random, solve

6 = g5 = P
argrerggrggl!\y gl = argmin [y — oyll3,

P, = orthorpojector onto range of &Py



Subspace matching

Collection of subspaces {Sy: 0 € ©}
@ each &y is K-dimensional

@ @ is a continuous (multi) parameter
Subspace matching: Given hy € RY, find closest subspace

0 = in ||hg — Pghol|?
arglggg” 0 — Pghgl|3

Compressed subspace matching: Given y = ®hg, where ® is M x N,
random, solve

0 = argmlnmln ly — <I>g|\2:argm1n\|y ngHQ,
0€O geS,

Py = orthorpojector onto range of ®P,

When is 6 as good as 07



Compressive ambiguity functions
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M =10 (compare to N = 37)

@ The compressed ambiguity function is a random process whose mean
is the true ambiguity function

@ For very modest M, these two functions peak in the same place



Performance gap

= best subspace from direct observation,
best subspace from compressed observation

Performance gap (assume ||hg||2 = 1):

E? — E? = | Pgho|)3 — | P;hol)3



Performance gap

st subspace from direct observation,

0 = be
0 = best subspace from compressed observation

Performance gap (assume ||hg||2 = 1):

E? — E? = || Pghy|)3 — ||Pshol|3
Theorem: For fixed hyg, if we have
sup ||Pg — Pg® T ®Py| < 61,  sup|Py@ ®Pshols < 6o
C) C)

then R
E? - E? < F((Sl,dg) =~ C((Sl —|—52)



Keeping subspaces separated

With @ random (entries iid, Gaussian),

sup ||[Pg — Py®T®Py||
0cO

is the suprema of a (matrix-valued) random process

We are essentially asking ® to stably embed every subset in the collection
{S@ 10 € @}
sup sup ||| — [|23]
0cO® xESy
ll]2<1

There is a lot of context for this type of problem ...



Embedding a subspace of RY

Let S be a K dimensional subspace of RV. For ® random, when do we
have

(1= 0)llzs — @23 < @1 — Paoflf < (1+0)l|as — 223,

for all 1, x> € S with appropriately high probability?

¢ is directly related to the singular values of ®, and

K

0 < .
~ VM

This is a “classical” result by Marchenko, Pastur (1960s), and later Szarek
(1990s).



Embedding a finite collection of subspaces of R

Let {Sp: 6 € ©} be a finite collection of subspaces of dimension K. For
® random, when do we have

(1=0)|lwr —m23 < [[®x1— Raa|3 < (14 6)|z1 — 223,

for all 1, xo € Sy with appropriately high probability?

A simple union bound yields

5 < | K + log |O]
~ M

(RIP: Candes, Tao; Rudelson, Vershynin; Davenport et al., mid-2000s)



Embedding an infinite collection of subspaces of RY

Let {Sp : 0 € ©} be an infinite collection of subspaces of dimension K.
For ® random, when do we have

(1=0)|lwr —x23 < [|[®x1— P23 < (146)|z1 — 223,

for all x1, xs € Sy with appropriately high probability?

A chaining argument (between subspaces) yields
5 < K(A +1log K)
~ M
where A is a measure of geometrical complexity of ©.
(Mantzel and R. '13)

In typical cases of interest, A ~ log (max{K, “effective dimension” of ©})



Embedding an infinite collection of subspaces of RY

Let {Sp : 0 € ©} be an infinite collection of subspaces of dimension K.
For ® random, when do we have

(1=0)|lwr —x23 < [|[®x1— P23 < (146)|z1 — 223,

for all x1, xs € Sy with appropriately high probability?

A (more subtle) chaining argument between subspaces yields

5 < K+ A
~ M

where A is a measure of geometrical complexity of ©.

(Dirksen '14)

In typical cases of interest, A ~ log (max{K, “effective dimension” of ©})



Geometrical complexity

N({Sp},d, €) = size of smallest cover
with

d(801’892) = ||P91 - P02”

A captures fast the cover grows as € — 0,
With Ny, a such that

1 (03
NS0 < )
we can take
A = alog(8) + 2log Ny
Typical: @ =1 or 2, Ny = poly(K).



Shiftable subspaces

Say {Sp} is generated by continuum of shifts of a known pulse (K = 1)
{U(t - 0)7 0 € [O7T]}

v(t) smooth:

with ||v(t)||w, = Sobolev norm,
A < 2log(||v||lw, T') + 4.08
Example: Gaussian with width o:

A <log(T/o) + 4.08



Shiftable subspaces

Say {Sp} is generated by continuum of shifts of a known pulse (K = 1)
{U(t - 0)7 0 € [O7T]}

v(t) not smooth:

with ||v(t)||7yv = total variation,
A < Alog(||v||lrv T) + 7.55
Example: Square with width o:

A <2log(T/o)+8.94



Shiftable bands

Smooth window, modulated by K different cosines (LOT).
Width of functions = o
Shift over interval of length T

In this case, we have

A ~log(K) + log(T/o)



Recall: Performance gap

best subspace from direct observation,
= best subspace from compressed observation

Performance gap (assume ||hgll2 = 1):

E? — E? = || Pghy|)3 — ||Psholl3

Theorem: For fixed hg, we have

(Mantzel, R '13, Dirksen ‘14)



From approximation gap to parameter estimate

| Pohol|3 | Poy||3 (compressed)
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M =10 (compare to 37 receivers)
We actually establish a uniform result:

sup |11 Poyl} — | Poholl3] < 6
e

Separation of the max from the “sidelobes”
= we have an accurate parameter estimate as well
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