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Direction of arrival estimation
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Sinusoidal source (wavelength λ, complex amplitude A) at angle θ induces
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Source localization

We observe a narrowband source emitting from (unknown) location ~r0:

y = αG(~r0) + noise, y ∈ CN

The dependence of G(~r) on ~r might be complicated, “implicit”
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Subspace matching

Collection of subspaces {Sθ : θ ∈ Θ}
each Sθ is K-dimensional

θ is a continuous (multi) parameter

Subspace matching: Given h0 ∈ RN , find closest subspace

θ̄ = arg min
θ∈Θ
‖h0 − P θh0‖22

Compressed subspace matching: Given y = Φh0, where Φ is M ×N ,
random, solve

θ̂ = arg min
θ∈Θ

min
g∈Sθ
‖y −Φg‖22 = arg min

θ∈Θ
‖y − P̃ θy‖22,

P̃ θ = orthorpojector onto range of ΦP θ

When is θ̂ as good as θ̄?



Compressive ambiguity functions

ambiguity function ‖P θh‖22 compressed amb func ‖P̃ θy‖22
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M = 10 (compare to N = 37)

The compressed ambiguity function is a random process whose mean
is the true ambiguity function

For very modest M , these two functions peak in the same place



Performance gap

θ̄ = best subspace from direct observation,
θ̂ = best subspace from compressed observation

Performance gap (assume ‖h0‖2 = 1):

Ê2 − Ē2 = ‖P θ̄h0‖22 − ‖P θ̂h0‖22



Performance gap

θ̄ = best subspace from direct observation,
θ̂ = best subspace from compressed observation

Performance gap (assume ‖h0‖2 = 1):

Ê2 − Ē2 = ‖P θ̄h0‖22 − ‖P θ̂h0‖22

Theorem: For fixed h0, if we have

sup
θ∈Θ
‖P θ − P θΦ

TΦP θ‖ ≤ δ1, sup
θ∈Θ
‖P θΦ

TΦP⊥θ h0‖2 ≤ δ2

then
Ê2 − Ē2 ≤ F (δ1, δ2) ≈ C(δ1 + δ2)



Keeping subspaces separated

With Φ random (entries iid, Gaussian),

sup
θ∈Θ
‖P θ − P θΦ

TΦP θ‖

is the suprema of a (matrix-valued) random process

We are essentially asking Φ to stably embed every subset in the collection
{Sθ : θ ∈ Θ}

sup
θ∈Θ

sup
x∈Sθ
‖x‖2≤1

∣∣‖Φx‖22 − ‖x‖22
∣∣

There is a lot of context for this type of problem ...



Embedding a subspace of RN

Let S be a K dimensional subspace of RN . For Φ random, when do we
have

(1− δ)‖x1 − x2‖22 ≤ ‖Φx1 −Φx2‖22 ≤ (1 + δ)‖x1 − x2‖22,

for all x1,x2 ∈ S with appropriately high probability?

δ is directly related to the singular values of Φ, and

δ .

√
K

M
.

This is a “classical” result by Marchenko, Pastur (1960s), and later Szarek
(1990s).



Embedding a finite collection of subspaces of RN

Let {Sθ : θ ∈ Θ} be a finite collection of subspaces of dimension K. For
Φ random, when do we have

(1− δ)‖x1 − x2‖22 ≤ ‖Φx1 −Φx2‖22 ≤ (1 + δ)‖x1 − x2‖22,

for all x1,x2 ∈ Sθ with appropriately high probability?

A simple union bound yields

δ .

√
K + log |Θ|

M

(RIP: Candes,Tao; Rudelson, Vershynin; Davenport et al., mid-2000s)



Embedding an infinite collection of subspaces of RN

Let {Sθ : θ ∈ Θ} be an infinite collection of subspaces of dimension K.
For Φ random, when do we have

(1− δ)‖x1 − x2‖22 ≤ ‖Φx1 −Φx2‖22 ≤ (1 + δ)‖x1 − x2‖22,

for all x1,x2 ∈ Sθ with appropriately high probability?

A chaining argument (between subspaces) yields

δ .

√
K(∆ + logK)

M

where ∆ is a measure of geometrical complexity of Θ.

(Mantzel and R. ’13)

In typical cases of interest, ∆ ∼ log (max{K, “effective dimension” of Θ})



Embedding an infinite collection of subspaces of RN

Let {Sθ : θ ∈ Θ} be an infinite collection of subspaces of dimension K.
For Φ random, when do we have

(1− δ)‖x1 − x2‖22 ≤ ‖Φx1 −Φx2‖22 ≤ (1 + δ)‖x1 − x2‖22,

for all x1,x2 ∈ Sθ with appropriately high probability?

A (more subtle) chaining argument between subspaces yields

δ .

√
K + ∆

M

where ∆ is a measure of geometrical complexity of Θ.

(Dirksen ’14)

In typical cases of interest, ∆ ∼ log (max{K, “effective dimension” of Θ})



Geometrical complexity

N({Sθ}, d, ε) = size of smallest cover
with

d(Sθ1 ,Sθ2) = ‖P θ1 − P θ2‖

∆ captures fast the cover grows as ε→ 0,
With N0, α such that

N({Sθ}, d, ε) ≤ N0

(
1

ε

)α
we can take

∆ = α log(8) + 2 logN0

Typical: α = 1 or 2, N0 = poly(K).



Shiftable subspaces

Say {Sθ} is generated by continuum of shifts of a known pulse (K = 1)

{v(t− θ), θ ∈ [0, T ]}

v(t) smooth:

with ‖v(t)‖W1 = Sobolev norm,

∆ ≤ 2 log(‖v‖W1 T ) + 4.08

Example: Gaussian with width σ:

∆ ≤ log(T/σ) + 4.08



Shiftable subspaces

Say {Sθ} is generated by continuum of shifts of a known pulse (K = 1)

{v(t− θ), θ ∈ [0, T ]}

v(t) not smooth:

with ‖v(t)‖TV = total variation,

∆ ≤ 4 log(‖v‖TV T ) + 7.55

Example: Square with width σ:

∆ ≤ 2 log(T/σ) + 8.94



Shiftable bands

Smooth window, modulated by K different cosines (LOT).
Width of functions = σ
Shift over interval of length T
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In this case, we have

∆ ∼ log(K) + log(T/σ)



Recall: Performance gap

θ̄ = best subspace from direct observation,
θ̂ = best subspace from compressed observation

Performance gap (assume ‖h0‖2 = 1):

Ê2 − Ē2 = ‖P θ̄h0‖22 − ‖P θ̂h0‖22

Theorem: For fixed h0, we have

Ê2 − Ē2 ≈
√
K + ∆

M

(Mantzel, R ’13, Dirksen ‘14)



From approximation gap to parameter estimate

‖P θh0‖22 ‖P̃ θy‖22 (compressed)
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M = 10 (compare to 37 receivers)

We actually establish a uniform result:

sup
θ∈Θ

∣∣∣‖P̃ θy‖22 − ‖P θh0‖22
∣∣∣ ≤ δ

Separation of the max from the “sidelobes”
⇒ we have an accurate parameter estimate as well
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